

Searching for Dark Matter with XENON100 and XENON1T

TAUP Sept 8 – 13 2013 Asilomar, CA

Ethan Brown
On behalf of the
XENON Collaboration

The Phased XENON Program

2005 - 2007

XENON10 σ_{SI} < 8.8 x 10⁻⁴⁴ cm² σ_{SI} < 2.0 x 10⁻⁴⁵ cm²

2008 - 201x

XENON100

2011 - 2017

XENON1T $\sigma_{\rm SI}$ ~ 2 x 10⁻⁴⁷ cm² (projected)

The XENON Collaboration

XENON100

TPC·

- 30 cm drift length and 30cm \u00f3
- 161 kg total (62 kg sensitive volume)
- Material screening and selection
- Active liquid xenon veto
- 100x lower background than XENON10

E. Aprile et al. Phys.Rev.D83:082001,2011

PMTs:

- 242 Hamamatsu R8520 in TPC and Active Veto
- High QE: Bottom tubes > 30%
- Low Radioactivity: < 10 mBq/PMT</p>

Backgrounds in XENON100

- Measured ER background in agreement with MC
- No fine tuning of rate!
- Activity taken from screening measurements
- Rate below 100keV 5e-3 evts/kg/keV/d

Astropart.Phys.35:43-49,2011 Phys. Rev. D83 (2011) 082001

Data MC Matching

S1 response (L_{eff}) S2 response (Q_y)

Data from XENON100 and $L_{\rm eff}$ measurements in excellent agreement with MC

E Aprile et al., (XENON100) Phys. Rev. D 88, 012006 (2013)

G Plante et al., Phys. Rev. C 84, 045805 (2011)

225 Day Dark Matter Search

Data collected from Mar 2011 - May 2012 Blinded analysis performed BG prediction (for cut based analysis):

NR: 0.17^{+0.12}_{-0.07} XENON100 (2013) arXiv:1306.2303

ER: 0.79 ± 0.16 Total: 1.0 ± 0.2

RESULT: 2 events in benchmark region

Profile Likelihood Analysis:

Cannot exclude BG only hypothesis

→ Limit derived

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Spin Independent Results

Results inconsistent with dark matter signal

Set upper limit on WIMP-nucleon SI cross section

Worlds most sensitive limit to date:

 σ_{SI} < 2.0 x 10⁻⁴⁵ cm² for 50 GeV/c² WIMP

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Spin Dependent Search

SD cross section, in terms of spin structure function $S_{\Delta}(q)$

$$\frac{d\sigma_{SD}}{dq^2} = \frac{8G_F^2}{(2J+1)v^2} S_A(q)$$

Odd xenon isotopes, unpaired neutron

<u>Different theoretical nuclear models:</u>

- Good agreement for pure neutron
- Large discrepancy for pure proton

Solid: pure neurton coupling Dashed: pure proton coupling

E. Aprile et al. (XENON100), Phys. Rev. Lett. 111 (2013)

Spin Dependent Results

- Same data and event selection as SI search
- Set limit on pure neutron and pure proton coupling
- Most sensitive limit on pure neutron coupling above 6 GeV/c²
- $\sigma_{\rm p}$ < 3.5 x 10⁻⁴⁰ cm² for 45 GeV/c² WIMP

E. Aprile et al. (XENON100), Phys. Rev. Lett. 111 (2013)

What's next for XENON100?

New physics analyses

- Search for annual modulation
- Search for solar and galactic axions
- Light dark matter (S2-only analysis)

Further detector characterization

- Response to single electrons
- Combined S1 and S2 NR energy

Continued data acquisition

- New ²⁴¹AmBe NR calibration
- Increased stats for ER calibration
- Further reduced Kr (1.8 ± 3 ppt)
- Investigate Rn reduction
- New calibration techniques for XENON1T

XENON1T

- 2.2 ton target (~1T fiducial)
- ~1m height X ~1m diameter
- 9.8m water shield
- Reduce background 100X from XENON100
- Goal: < 1 background in 2 years</p>
- Increase sensitivity by factor 100

Backgrounds for XENON1T

Nuclear Recoils:

Tag muons in 10m water tank Materials with low activity in U/Th (α,n) Reject multiple neutron scatters

Electron Recoils:

External gammas stopped at edges Betas from internal impurities dominate 85Kr, 222Rn

WILHELMS-UNIVERSITÄT

Reducing Intrinsic Backgrounds

Building cryogenic distillation column for Kr removal Aim: Kr/Xe < 0.1 ppt High throughput: 3 kg/h (3.5 tons in ~ 1.8 month) Custom gas purity diagnostics (online and offline) $(^{83m}$ Kr tracer, ATTA, RGMS, RGA + cold trap)

Reduce Rn emanation inside cryostat Aim: 222 Rn < 1 μ Bq Extensive emanation screening Attenuate Rn by passing xenon through charcoal filter

Construction Started!

Water tank and building to be installed this year

Other major systems installed starting January 2014

Commissioning in 2014

Science run to begin 2015

Sensitivity of XENON1T

Example of discovery

 $\sigma_{\rm sp} \sim 2 \times 10^{-47} \ \rm cm^2 \ for \ 50 \ GeV/c^2 \ WIMP$

Probe majority of SUSY-favored phase space

→ Strong discovery potential

Buchmueller et. al, arXiv:1112.3564 (2011) A Fowli et. al, arXiv:1112.3564 (2012)

Scaling it up again... XENONnT

XENON1T plus a larger TPC and inner cryostat

Everything from the outer cryostat out remains the same

Aim: 20 ton-years exposure

Start date: 2018

Summary

XENON100:

- World leading limit on SI and SD WIMP-nucleon cross section
- Still running, new science and detector properties

XENON1T:

- Now under construction at LNGS
- Commissioning 2014
- Science run 2015
- 2 ton-year by 2017

XENONnT:

- Quick upgrade after XENON1T
- 20 ton-year by 2021

